VeighNa量化社区
你的开源社区量化交易平台
hxxjava's Avatar
Member
离线
419 帖子
声望: 155

1. 价差数量类SpreadData的目前代码:

class SpreadData:
    """"""

    def __init__(
        self,
        name: str,
        legs: List[LegData],
        price_multipliers: Dict[str, int],
        trading_multipliers: Dict[str, int],
        active_symbol: str,
        inverse_contracts: Dict[str, bool],
        min_volume: float
    ):
        """"""
        self.name: str = name

        self.legs: Dict[str, LegData] = {}
        self.active_leg: LegData = None
        self.passive_legs: List[LegData] = []

        self.min_volume: float = min_volume
        self.pricetick: float = 0

        # For calculating spread price
        self.price_multipliers: Dict[str, int] = price_multipliers

        # For calculating spread pos and sending orders
        self.trading_multipliers: Dict[str, int] = trading_multipliers

        self.inverse_contracts: Dict[str, bool] = inverse_contracts

        self.price_formula: str = ""
        self.trading_formula: str = ""

        for leg in legs:
            self.legs[leg.vt_symbol] = leg
            if leg.vt_symbol == active_symbol:
                self.active_leg = leg
            else:
                self.passive_legs.append(leg)

            price_multiplier = self.price_multipliers[leg.vt_symbol]
            if price_multiplier > 0:
                self.price_formula += f"+{price_multiplier}*{leg.vt_symbol}"
            else:
                self.price_formula += f"{price_multiplier}*{leg.vt_symbol}"

            trading_multiplier = self.trading_multipliers[leg.vt_symbol]
            if trading_multiplier > 0:
                self.trading_formula += f"+{trading_multiplier}*{leg.vt_symbol}"
            else:
                self.trading_formula += f"{trading_multiplier}*{leg.vt_symbol}"

            if not self.pricetick:
                self.pricetick = leg.pricetick
            else:
                self.pricetick = min(self.pricetick, leg.pricetick)

        # Spread data
        self.bid_price: float = 0
        self.ask_price: float = 0
        self.bid_volume: float = 0
        self.ask_volume: float = 0

        self.net_pos: float = 0
        self.datetime: datetime = None

    def calculate_price(self):
        """"""
        self.clear_price()

        # Go through all legs to calculate price
        for n, leg in enumerate(self.legs.values()):
            # Filter not all leg price data has been received
            if not leg.bid_volume or not leg.ask_volume:
                self.clear_price()
                return

            # Calculate price
            price_multiplier = self.price_multipliers[leg.vt_symbol]
            if price_multiplier > 0:
                self.bid_price += leg.bid_price * price_multiplier
                self.ask_price += leg.ask_price * price_multiplier
            else:
                self.bid_price += leg.ask_price * price_multiplier
                self.ask_price += leg.bid_price * price_multiplier

            # Round price to pricetick
            if self.pricetick:
                self.bid_price = round_to(self.bid_price, self.pricetick)
                self.ask_price = round_to(self.ask_price, self.pricetick)

            # Calculate volume
            trading_multiplier = self.trading_multipliers[leg.vt_symbol]
            inverse_contract = self.inverse_contracts[leg.vt_symbol]

            if not inverse_contract:
                leg_bid_volume = leg.bid_volume
                leg_ask_volume = leg.ask_volume
            else:
                leg_bid_volume = calculate_inverse_volume(
                    leg.bid_volume, leg.bid_price, leg.size)
                leg_ask_volume = calculate_inverse_volume(
                    leg.ask_volume, leg.ask_price, leg.size)

            if trading_multiplier > 0:
                adjusted_bid_volume = floor_to(
                    leg_bid_volume / trading_multiplier,
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_ask_volume / trading_multiplier,
                    self.min_volume
                )
            else:
                adjusted_bid_volume = floor_to(
                    leg_ask_volume / abs(trading_multiplier),
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_bid_volume / abs(trading_multiplier),
                    self.min_volume
                )

            # For the first leg, just initialize
            if not n:
                self.bid_volume = adjusted_bid_volume
                self.ask_volume = adjusted_ask_volume
            # For following legs, use min value of each leg quoting volume
            else:
                self.bid_volume = min(self.bid_volume, adjusted_bid_volume)
                self.ask_volume = min(self.ask_volume, adjusted_ask_volume)

            # Update calculate time
            self.datetime = datetime.now(LOCAL_TZ)

    def calculate_pos(self):
        """"""
        long_pos = 0
        short_pos = 0

        for n, leg in enumerate(self.legs.values()):
            leg_long_pos = 0
            leg_short_pos = 0

            trading_multiplier = self.trading_multipliers[leg.vt_symbol]
            if not trading_multiplier:
                continue

            inverse_contract = self.inverse_contracts[leg.vt_symbol]
            if not inverse_contract:
                net_pos = leg.net_pos
            else:
                net_pos = calculate_inverse_volume(
                    leg.net_pos, leg.net_pos_price, leg.size)

            adjusted_net_pos = net_pos / trading_multiplier

            if adjusted_net_pos > 0:
                adjusted_net_pos = floor_to(adjusted_net_pos, self.min_volume)
                leg_long_pos = adjusted_net_pos
            else:
                adjusted_net_pos = ceil_to(adjusted_net_pos, self.min_volume)
                leg_short_pos = abs(adjusted_net_pos)

            if not n:
                long_pos = leg_long_pos
                short_pos = leg_short_pos
            else:
                long_pos = min(long_pos, leg_long_pos)
                short_pos = min(short_pos, leg_short_pos)

        if long_pos > 0:
            self.net_pos = long_pos
        else:
            self.net_pos = -short_pos

    def clear_price(self):
        """"""
        self.bid_price = 0
        self.ask_price = 0
        self.bid_volume = 0
        self.ask_volume = 0

    def calculate_leg_volume(self, vt_symbol: str, spread_volume: float) -> float:
        """"""
        leg = self.legs[vt_symbol]
        trading_multiplier = self.trading_multipliers[leg.vt_symbol]
        leg_volume = spread_volume * trading_multiplier
        return leg_volume

    def calculate_spread_volume(self, vt_symbol: str, leg_volume: float) -> float:
        """"""
        leg = self.legs[vt_symbol]
        trading_multiplier = self.trading_multipliers[leg.vt_symbol]
        spread_volume = leg_volume / trading_multiplier

        if spread_volume > 0:
            spread_volume = floor_to(spread_volume, self.min_volume)
        else:
            spread_volume = ceil_to(spread_volume, self.min_volume)

        return spread_volume

    def to_tick(self):
        """"""
        tick = TickData(
            symbol=self.name,
            exchange=Exchange.LOCAL,
            datetime=self.datetime,
            name=self.name,
            last_price=(self.bid_price + self.ask_price) / 2,
            bid_price_1=self.bid_price,
            ask_price_1=self.ask_price,
            bid_volume_1=self.bid_volume,
            ask_volume_1=self.ask_volume,
            gateway_name="SPREAD"
        )
        return tick

    def is_inverse(self, vt_symbol: str) -> bool:
        """"""
        inverse_contract = self.inverse_contracts[vt_symbol]
        return inverse_contract

    def get_leg_size(self, vt_symbol: str) -> float:
        """"""
        leg = self.legs[vt_symbol]
        return leg.size

2. 腿数据的LegData定义

class LegData:
    """"""

    def __init__(self, vt_symbol: str):
        """"""
        self.vt_symbol: str = vt_symbol

        # Price and position data
        self.bid_price: float = 0
        self.ask_price: float = 0
        self.bid_volume: float = 0
        self.ask_volume: float = 0

        self.long_pos: float = 0
        self.short_pos: float = 0
        self.net_pos: float = 0

        self.last_price: float = 0
        self.net_pos_price: float = 0       # Average entry price of net position

        # Tick data buf
        self.tick: TickData = None

        # Contract data
        self.size: float = 0
        self.net_position: bool = False
        self.min_volume: float = 0
        self.pricetick: float = 0

    def update_contract(self, contract: ContractData):
        """"""
        self.size = contract.size
        self.net_position = contract.net_position
        self.min_volume = contract.min_volume
        self.pricetick = contract.pricetick

    def update_tick(self, tick: TickData):
        """"""
        self.bid_price = tick.bid_price_1
        self.ask_price = tick.ask_price_1
        self.bid_volume = tick.bid_volume_1
        self.ask_volume = tick.ask_volume_1
        self.last_price = tick.last_price

        self.tick = tick

    def update_position(self, position: PositionData):
        """"""
        if position.direction == Direction.NET:
            self.net_pos = position.volume
            self.net_pos_price = position.price
        else:
            if position.direction == Direction.LONG:
                self.long_pos = position.volume
            else:
                self.short_pos = position.volume
            self.net_pos = self.long_pos - self.short_pos

    def update_trade(self, trade: TradeData):
        """"""
        # Only update net pos for contract with net position mode
        if self.net_position:
            trade_cost = trade.volume * trade.price
            old_cost = self.net_pos * self.net_pos_price

            if trade.direction == Direction.LONG:
                new_pos = self.net_pos + trade.volume

                if self.net_pos >= 0:
                    new_cost = old_cost + trade_cost
                    self.net_pos_price = new_cost / new_pos
                else:
                    # If all previous short position closed
                    if not new_pos:
                        self.net_pos_price = 0
                    # If only part short position closed
                    elif new_pos > 0:
                        self.net_pos_price = trade.price
            else:
                new_pos = self.net_pos - trade.volume

                if self.net_pos <= 0:
                    new_cost = old_cost - trade_cost
                    self.net_pos_price = new_cost / new_pos
                else:
                    # If all previous long position closed
                    if not new_pos:
                        self.net_pos_price = 0
                    # If only part long position closed
                    elif new_pos < 0:
                        self.net_pos_price = trade.price

            self.net_pos = new_pos
        else:
            if trade.direction == Direction.LONG:
                if trade.offset == Offset.OPEN:
                    self.long_pos += trade.volume
                else:
                    self.short_pos -= trade.volume
            else:
                if trade.offset == Offset.OPEN:
                    self.short_pos += trade.volume
                else:
                    self.long_pos -= trade.volume

            self.net_pos = self.long_pos - self.short_pos

3. SpreadData的to_tck()一定能够返回有效tick吗?

3.1 SpreadData的3个价格的计算

从上面的代码可以知道,SpreadData中包含若干个腿,它的tick数据应该是有各腿的tick合成的,可是我们看SpreadData的to_tck()的代码,看不是这样的!

    def to_tick(self):
        """"""
        tick = TickData(
            symbol=self.name,
            exchange=Exchange.LOCAL,
            datetime=self.datetime,
            name=self.name,
            last_price=(self.bid_price + self.ask_price) / 2,
            bid_price_1=self.bid_price,
            ask_price_1=self.ask_price,
            bid_volume_1=self.bid_volume,
            ask_volume_1=self.ask_volume,
            gateway_name="SPREAD"
        )
        return tick

举例吧:

假如价差(SpreadData)的实例S中包含两腿(LegData)L1和L2,L1、L2的价格乘数分别为1和-1,那么:
在任意时刻,当L1得到了最新tick1,L2得到最新tick2,
L1的
L1.last_price=tick1.last_price
L1.bid_price_1=tick1.bid_price_1
L1.ask_price_1=tick1.ask_price_1

L2的部分数据
L2.last_price=tick2.last_price
L2.bid_price_1=tick2.bid_price_1
L2.ask_price_1=tick2.ask_price_1

那么经过价差S的calculate_price()的计算后,
S.last_price=L1.last_price-L2.last_price
S.bid_price_1=L1.bid_price_1-L2.bid_price_1
S.ask_price_1=L1.ask_price_1-L2.ask_price_1

价差S的价格的有效性来自于腿L1和腿L2的价格的有效性!

问题来了:如果腿L1已经得到了有效数据,而腿L2还没有得到有效数据,那么价差S的价格将是无效的!

3.2 注意价差的calculate_price()函数中的判断条件

            if not leg.bid_volume or not leg.ask_volume:
                self.clear_price()
                return

这里的条件意思是说如果价差的某个腿中的数据是无意义的,那么就清空价差的所有价格,那么此时SpreadData的to_tick()得到的tick就不是一个有效的tick数据!

3.3 何时会发生这种情况?

只要价差的多个腿中有一个腿的数据没有使用实际的tick更新过,就会发生这种情况!

3.4 出现这种情况,只要价差的价格是多少?

全部是0,因为clear_price()的代码如下:

    def clear_price(self):
        """"""
        self.bid_price = 0
        self.ask_price = 0
        self.bid_volume = 0
        self.ask_volume = 0

4. 这样的数据应会被推送给价差和价差策略吗?

4.1 SpreadDataEngine是如何推送价差数据给价格和价差策略的?

我们知道价差的数据计算和更新是有SpreadDataEngine维护的,下面是SpreadDataEngine的process_tick_event():

    def process_tick_event(self, event: Event) -> None:
        """"""
        tick = event.data

        leg = self.legs.get(tick.vt_symbol, None)
        if not leg:
            return
        leg.update_tick(tick)

        for spread in self.symbol_spread_map[tick.vt_symbol]:
            spread.calculate_price()           # 这里并没有对价差的价格计算是否有效的判断
            self.put_data_event(spread)

    def put_data_event(self, spread: SpreadData) -> None:
        """"""
        event = Event(EVENT_SPREAD_DATA, spread)
        self.event_engine.put(event)

这里并没有对价差的价格计算是否有效的判断,就直接向价差发送了EVENT_SPREAD_DATA消息,这看引起价差和价差策略通过推送接口on_spread_data()得到错误的价差数据!!!

4.2 如何改正此错误?

4.2.1 修改价差SpreadData的calculate_price()函数,使其可以返回价差是否有效:

 def calculate_price(self)->bool:    # hxxjava change
        """"""
        self.clear_price()

        # Go through all legs to calculate price
        for n, leg in enumerate(self.legs.values()):
            # Filter not all leg price data has been received
            if not leg.bid_volume or not leg.ask_volume:
                self.clear_price()
                return False    # hxxjava add

            # Calculate price
            price_multiplier = self.price_multipliers[leg.vt_symbol]
            if price_multiplier > 0:
                self.bid_price += leg.bid_price * price_multiplier
                self.ask_price += leg.ask_price * price_multiplier
            else:
                self.bid_price += leg.ask_price * price_multiplier
                self.ask_price += leg.bid_price * price_multiplier

            # Round price to pricetick
            if self.pricetick:
                self.bid_price = round_to(self.bid_price, self.pricetick)
                self.ask_price = round_to(self.ask_price, self.pricetick)

            # Calculate volume
            trading_multiplier = self.trading_multipliers[leg.vt_symbol]
            inverse_contract = self.inverse_contracts[leg.vt_symbol]

            if not inverse_contract:
                leg_bid_volume = leg.bid_volume
                leg_ask_volume = leg.ask_volume
            else:
                leg_bid_volume = calculate_inverse_volume(
                    leg.bid_volume, leg.bid_price, leg.size)
                leg_ask_volume = calculate_inverse_volume(
                    leg.ask_volume, leg.ask_price, leg.size)

            if trading_multiplier > 0:
                adjusted_bid_volume = floor_to(
                    leg_bid_volume / trading_multiplier,
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_ask_volume / trading_multiplier,
                    self.min_volume
                )
            else:
                adjusted_bid_volume = floor_to(
                    leg_ask_volume / abs(trading_multiplier),
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_bid_volume / abs(trading_multiplier),
                    self.min_volume
                )

            # For the first leg, just initialize
            if not n:
                self.bid_volume = adjusted_bid_volume
                self.ask_volume = adjusted_ask_volume
            # For following legs, use min value of each leg quoting volume
            else:
                self.bid_volume = min(self.bid_volume, adjusted_bid_volume)
                self.ask_volume = min(self.ask_volume, adjusted_ask_volume)

            # Update calculate time
            self.datetime = datetime.now(LOCAL_TZ)

      return True # hxxjava add

4.2.2 修改灵活价差AdvancedSpreadData的calculate_price()函数,使其可以返回价差是否有效:

class AdvancedSpreadData(SpreadData):
    def calculate_price(self)->bool: # hxxjava change
        """"""
        self.clear_price()

        # Go through all legs to calculate price
        bid_data = {}
        ask_data = {}
        volume_inited = False

        for variable, leg in self.variable_legs.items():
            # Filter not all leg price data has been received
            if not leg.bid_volume or not leg.ask_volume:
                self.clear_price()
                return False    # hxxjava change

            # Generate price dict for calculating spread bid/ask
            variable_direction = self.variable_directions[variable]
            if variable_direction > 0:
                bid_data[variable] = leg.bid_price
                ask_data[variable] = leg.ask_price
            else:
                bid_data[variable] = leg.ask_price
                ask_data[variable] = leg.bid_price

            # Calculate volume
            trading_multiplier = self.trading_multipliers[leg.vt_symbol]
            if not trading_multiplier:
                continue

            inverse_contract = self.inverse_contracts[leg.vt_symbol]
            if not inverse_contract:
                leg_bid_volume = leg.bid_volume
                leg_ask_volume = leg.ask_volume
            else:
                leg_bid_volume = calculate_inverse_volume(
                    leg.bid_volume, leg.bid_price, leg.size)
                leg_ask_volume = calculate_inverse_volume(
                    leg.ask_volume, leg.ask_price, leg.size)

            if trading_multiplier > 0:
                adjusted_bid_volume = floor_to(
                    leg_bid_volume / trading_multiplier,
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_ask_volume / trading_multiplier,
                    self.min_volume
                )
            else:
                adjusted_bid_volume = floor_to(
                    leg_ask_volume / abs(trading_multiplier),
                    self.min_volume
                )
                adjusted_ask_volume = floor_to(
                    leg_bid_volume / abs(trading_multiplier),
                    self.min_volume
                )

            # For the first leg, just initialize
            if not volume_inited:
                self.bid_volume = adjusted_bid_volume
                self.ask_volume = adjusted_ask_volume
                volume_inited = True
            # For following legs, use min value of each leg quoting volume
            else:
                self.bid_volume = min(self.bid_volume, adjusted_bid_volume)
                self.ask_volume = min(self.ask_volume, adjusted_ask_volume)

        # Calculate spread price
        self.bid_price = self.parse_formula(self.price_code, bid_data)
        self.ask_price = self.parse_formula(self.price_code, ask_data)

        # Round price to pricetick
        if self.pricetick:
            self.bid_price = round_to(self.bid_price, self.pricetick)
            self.ask_price = round_to(self.ask_price, self.pricetick)

        # Update calculate time
        self.datetime = datetime.now(LOCAL_TZ)

        return True # hxxjava add

4.2.3 修改SpreadDataEngine的process_tick_event()函数:

    def process_tick_event(self, event: Event) -> None:
        """"""
        tick = event.data

        leg = self.legs.get(tick.vt_symbol, None)
        if not leg:
            return
        leg.update_tick(tick)

        for spread in self.symbol_spread_map[tick.vt_symbol]:
            if spread.calculate_price():    # hxxjava change
                self.put_data_event(spread)

5. 如果不做上述改动会发生什么问题?

如果不做上述改动会,可能会出现策略在开盘的时间,由于价差没有收齐所有腿的tick,
导致价差的 lastest_price等数据为0,可是仍然被推价差数据,进而产生用错误的价差tick。
错误的价差tick会引发错误的价差交易信号,并且以错误的价格进行价差的开仓和平仓!!!

本人在实际的价差策略交易中已经发生过上述的错误!

呼吁vnpy官方尽快修改上述问题!!!

1. 价差策略模块中自带的策略StatisticalArbitrageStrategy

这个价差策略的大致意思是:

  • 当价差的数据发生变化是,特到价差的tick,然后利用BarGenerator来合成出1分钟价差K线;
  • 得到1分钟价差K线后再更新一个ArrayManager self.am,self.am初始化成功后就可以计算BOLL通道的中轨、上轨和下轨;
  • 当1分钟K线的收盘价与BOLL通道的中轨、上轨和下轨的关系来进行价差的开仓和平仓交易。

2. 价差策略StatisticalArbitrageStrategy的代码及错误

说明:错误的地方我已知注释了。

from vnpy.trader.utility import BarGenerator, ArrayManager
from vnpy.app.spread_trading import (
    SpreadStrategyTemplate,
    SpreadAlgoTemplate,
    SpreadData,
    OrderData,
    TradeData,
    TickData,
    BarData
)


class StatisticalArbitrageStrategy(SpreadStrategyTemplate):
    """"""

    author = "用Python的交易员"

    boll_window = 20
    boll_dev = 2
    max_pos = 10
    payup = 10
    interval = 5

    spread_pos = 0.0
    boll_up = 0.0
    boll_down = 0.0
    boll_mid = 0.0

    parameters = [
        "boll_window",
        "boll_dev",
        "max_pos",
        "payup",
        "interval"
    ]
    variables = [
        "spread_pos",
        "boll_up",
        "boll_down",
        "boll_mid"
    ]

    def __init__(
        self,
        strategy_engine,
        strategy_name: str,
        spread: SpreadData,
        setting: dict
    ):
        """"""
        super().__init__(
            strategy_engine, strategy_name, spread, setting
        )

        self.bg = BarGenerator(self.on_spread_bar)
        self.am = ArrayManager()

    def on_init(self):
        """
        Callback when strategy is inited.
        """
        self.write_log("策略初始化")

        self.load_bar(10)

    def on_start(self):
        """
        Callback when strategy is started.
        """
        self.write_log("策略启动")

    def on_stop(self):
        """
        Callback when strategy is stopped.
        """
        self.write_log("策略停止")

        self.put_event()

    def on_spread_data(self):
        """
        Callback when spread price is updated.
        """
        tick = self.get_spread_tick()
        self.on_spread_tick(tick)

    def on_spread_tick(self, tick: TickData):
        """
        Callback when new spread tick data is generated.
        """
        self.bg.update_tick(tick)   # 这里有兼容性错误,BarGenerator处理不了最新价为0的tick

    def on_spread_bar(self, bar: BarData):
        """
        Callback when spread bar data is generated.
        """
        self.stop_all_algos()

        self.am.update_bar(bar)
        if not self.am.inited:
            return

        self.boll_mid = self.am.sma(self.boll_window)
        self.boll_up, self.boll_down = self.am.boll(
            self.boll_window, self.boll_dev)

        if not self.spread_pos:
            if bar.close_price >= self.boll_up:
                self.start_short_algo(
                    bar.close_price - 10,
                    self.max_pos,
                    payup=self.payup,
                    interval=self.interval
                )
            elif bar.close_price <= self.boll_down:
                self.start_long_algo(
                    bar.close_price + 10,
                    self.max_pos,
                    payup=self.payup,
                    interval=self.interval
                )
        elif self.spread_pos < 0:
            if bar.close_price <= self.boll_mid:
                self.start_long_algo(
                    bar.close_price + 10,
                    abs(self.spread_pos),
                    payup=self.payup,
                    interval=self.interval
                )
        else:
            if bar.close_price >= self.boll_mid:
                self.start_short_algo(
                    bar.close_price - 10,
                    abs(self.spread_pos),
                    payup=self.payup,
                    interval=self.interval
                )

        self.put_event()

    def on_spread_pos(self):
        """
        Callback when spread position is updated.
        """
        self.spread_pos = self.get_spread_pos()
        self.put_event()

    def on_spread_algo(self, algo: SpreadAlgoTemplate):
        """
        Callback when algo status is updated.
        """
        pass

    def on_order(self, order: OrderData):
        """
        Callback when order status is updated.
        """
        pass

    def on_trade(self, trade: TradeData):
        """
        Callback when new trade data is received.
        """
        pass

    def stop_open_algos(self):
        """"""
        if self.buy_algoid:
            self.stop_algo(self.buy_algoid)

        if self.short_algoid:
            self.stop_algo(self.short_algoid)

    def stop_close_algos(self):
        """"""
        if self.sell_algoid:    #  self.sell_algoid没有定义    
            self.stop_algo(self.sell_algoid)

        if self.cover_algoid:  #  self.cover_algoid没有定义
            self.stop_algo(self.cover_algoid)

3. 这里BarGenerator与价差存在兼容性错误:处理不了最新价为0的tick

下面是BarGenerator的update_tick()函数,错误的地方我已知注释了:

    def update_tick(self, tick: TickData) -> None:
        """
        Update new tick data into generator.
        """
        new_minute = False

        # Filter tick data with 0 last price
        if not tick.last_price:             # 这个过滤条件有点想当然了
            return

        # Filter tick data with older timestamp
        if self.last_tick and tick.datetime < self.last_tick.datetime:
            return

        if not self.bar:
            new_minute = True
        elif (
            (self.bar.datetime.minute != tick.datetime.minute)
            or (self.bar.datetime.hour != tick.datetime.hour)
        ):
            self.bar.datetime = self.bar.datetime.replace(
                second=0, microsecond=0
            )
            self.on_bar(self.bar)

            new_minute = True

        if new_minute:
            self.bar = BarData(
                symbol=tick.symbol,
                exchange=tick.exchange,
                interval=Interval.MINUTE,
                datetime=tick.datetime,
                gateway_name=tick.gateway_name,
                open_price=tick.last_price,
                high_price=tick.last_price,
                low_price=tick.last_price,
                close_price=tick.last_price,
                open_interest=tick.open_interest
            )
        else:
            self.bar.high_price = max(self.bar.high_price, tick.last_price)
            if tick.high_price > self.last_tick.high_price:
                self.bar.high_price = max(self.bar.high_price, tick.high_price)

            self.bar.low_price = min(self.bar.low_price, tick.last_price)
            if tick.low_price < self.last_tick.low_price:
                self.bar.low_price = min(self.bar.low_price, tick.low_price)

            self.bar.close_price = tick.last_price
            self.bar.open_interest = tick.open_interest
            self.bar.datetime = tick.datetime

        if self.last_tick:
            volume_change = tick.volume - self.last_tick.volume
            self.bar.volume += max(volume_change, 0)

        self.last_tick = tick

4. 如何修改此错误?

4.1 修改BarGenerator的update_tick()函数

把我标识的错误的过滤条件改成下面的代码,把它注释掉:

        # if not tick.last_price:             # 这个过滤条件有点想当然了
        #    return

4.2 修改价差策略StatisticalArbitrageStrategy

修改之处见代码中的注释:

from vnpy.trader.utility import BarGenerator, ArrayManager
from vnpy.app.spread_trading import (
    SpreadStrategyTemplate,
    SpreadAlgoTemplate,
    SpreadData,
    OrderData,
    TradeData,
    TickData,
    BarData
)


class StatisticalArbitrageStrategy(SpreadStrategyTemplate):
    """"""

    author = "用Python的交易员"

    boll_window = 20
    boll_dev = 2
    max_pos = 10
    payup = 10
    interval = 5

    spread_pos = 0.0
    boll_up = 0.0
    boll_down = 0.0
    boll_mid = 0.0

    parameters = [
        "boll_window",
        "boll_dev",
        "max_pos",
        "payup",
        "interval"
    ]
    variables = [
        "spread_pos",
        "boll_up",
        "boll_down",
        "boll_mid"
    ]

    def __init__(
        self,
        strategy_engine,
        strategy_name: str,
        spread: SpreadData,
        setting: dict
    ):
        """"""
        super().__init__(
            strategy_engine, strategy_name, spread, setting
        )

        self.bg = BarGenerator(self.on_spread_bar)
        self.am = ArrayManager()

        self.buy_algoid:str = ""    # hxxjava add
        self.short_algoid:str = ""  # hxxjava add
        self.sell_algoid = ""       # hxxjava add
        self.cover_algoid = ""      # hxxjava add


    def on_init(self):
        """
        Callback when strategy is inited.
        """
        self.write_log("策略初始化")

        self.load_bar(10)

    def on_start(self):
        """
        Callback when strategy is started.
        """
        self.write_log("策略启动")

    def on_stop(self):
        """
        Callback when strategy is stopped.
        """
        self.write_log("策略停止")

        self.put_event()

    def on_spread_data(self):
        """
        Callback when spread price is updated.
        """
        tick = self.get_spread_tick()
        self.on_spread_tick(tick)

    def on_spread_tick(self, tick: TickData):
        """
        Callback when new spread tick data is generated.
        """
        self.bg.update_tick(tick)

    def on_spread_bar(self, bar: BarData):
        """
        Callback when spread bar data is generated.
        """
        self.stop_all_algos()

        self.am.update_bar(bar)
        if not self.am.inited:
            return

        self.boll_mid = self.am.sma(self.boll_window)
        self.boll_up, self.boll_down = self.am.boll(
            self.boll_window, self.boll_dev)

        if not self.spread_pos:
            if bar.close_price >= self.boll_up:
                self.buy_algoid = self.start_short_algo( # hxxjava change
                    bar.close_price - 10,
                    self.max_pos,
                    payup=self.payup,
                    interval=self.interval
                )
            elif bar.close_price <= self.boll_down:
                self.short_algoid = self.start_long_algo( # hxxjava change
                    bar.close_price + 10,
                    self.max_pos,
                    payup=self.payup,
                    interval=self.interval
                )
        elif self.spread_pos < 0:
            if bar.close_price <= self.boll_mid:
                self.sell_algoid = self.start_long_algo( # hxxjava change
                    bar.close_price + 10,
                    abs(self.spread_pos),
                    payup=self.payup,
                    interval=self.interval
                )
        else:
            if bar.close_price >= self.boll_mid:
                self.cover_algoid = self.start_short_algo(  # hxxjava change
                    bar.close_price - 10,
                    abs(self.spread_pos),
                    payup=self.payup,
                    interval=self.interval
                )

        self.put_event()

    def on_spread_pos(self):
        """
        Callback when spread position is updated.
        """
        self.spread_pos = self.get_spread_pos()
        self.put_event()

    def on_spread_algo(self, algo: SpreadAlgoTemplate):
        """
        Callback when algo status is updated.
        """
        if not algo.is_active():    # hxxjava add
            if self.buy_algoid == algo.algoid:
                self.buy_algoid = ""
            elif self.sell_algoid == algo.algoid:
                self.sell_algoid = ""
            elif self.short_algoid == algo.algoid:
                self.short_algoid = ""
            else:
                self.cover_algoid = ""

    def on_order(self, order: OrderData):
        """
        Callback when order status is updated.
        """
        pass

    def on_trade(self, trade: TradeData):
        """
        Callback when new trade data is received.
        """
        pass

    def stop_open_algos(self):
        """"""
        if self.buy_algoid:
            self.stop_algo(self.buy_algoid)

        if self.short_algoid:
            self.stop_algo(self.short_algoid)

    def stop_close_algos(self):
        """"""
        if self.sell_algoid:
            self.stop_algo(self.sell_algoid)

        if self.cover_algoid:
            self.stop_algo(self.cover_algoid)

嗯,原来是有这一层考虑,谢谢回复!

您答非所问了。
我的意思是既然每腿的委托和成交都不推送给价差策略,为什么还要on_order()和on_trade()这两个推送接口?

我在自己的价差策略on_order()中加了这样的代码

    def on_order(self, order: OrderData):
        """
        Callback when order status is updated.
        """
        print(f"{self.spread_name} {order}")

在自己的价差策略on_trade()中加了这样的代码

    def on_trade(self, trade: TradeData):
        """
        Callback when new trade data is received.
        """
        print(f"{self.spread_name} {trade}")

我的价差策略运行后,成功交易后,没有任何打印信息,为什么这样?

roger wrote:

  1. 我只想看到实时的价差 不需要实盘下单
  2. 交易量改0..01是因为公式中参数是小数,不改小没法输入小数
  3. 即使不改交易量,输入整数类型公式,依然存在相同问题 ,如图

description

先研究跨期吧,这种3腿的价差,你的xA+yB+zC,x,y,z的选取决定了交易量v的设置,
如果单腿x,y,z的交易数量必须为整数,要保证xv,yv,zv同时为整数(无所谓正负),
可能你找到的v是你无法承受的下单量,你的资金可能压根就不够开仓价差一次的,搞了半天白玩。

输:

A-B

或者

A*3-B*2

之类的.
另外,你的最小交易量输错了,应该是1,au2110这类单边合约交易不了0.001手

1. 不同的价差交易策略交易相同的价差会发生什么?

1.1 一般的理解:价差和单边合约一样是一个交易标的

CTA策略的交易标的是一个具体的单边合约。假如我们运行两个CTA策略A和B实例,它们交易的合约都是C。同时运行A和B,那么我们可以发现A和B可以独立地统计各自的持仓,也就是说它们的pos可能是不一样的,不会相互干扰。
而价差交易策略的交易标的是价差。假如我们运行两个价差交易策略SA和SB实例,它们交易的价差都是S1。同时运行SA和SB,SA和SB也应该可以独立地统计各自的持仓,也就是说它们的spread_pos也应该是不一样的,不应该相互干扰。
然而,我们可以发现SA对S1开仓成功后,SB并没有开仓过,可是我们发现SB的spread_pos已经变成和SA的spread_pos相同的数量!
有点迷糊,细想一下,是啊,谁让你交易了相同的价差标的呢?

1.2 不同价差交易策略交易不同名称价差(但是价差的各腿是相同的)

不行就改,咱们按照价差S1的设置再创建一个价差S2,但是给它取一个不同的名称,区别一下!
接下来吧价差交易策略SB的标的该出S2,再次运行价差交易策略SB。
奇怪的现象发生了:SB并没有开仓过,可是SB的spread_pos仍然变成和SA的spread_pos相同的数量!

2. 问题出在哪里?

查看一下委托单:

description

其中"来源"一栏中的内容为 “SpreadTrading_价差名称”,就是这里过于简单,导致委托单只关联了价差,而没有关联价差交易策略名称,
所以在价差交易的SpreadTradeEngine引擎无法按照价差策略来推送类似委托单order,成交单trade和价差持仓信息等。

价差交易策略一旦发出委托,调用了SpreadStrategyTemplate的start_long_algo()或者start_short_algo(),而这两个函数最终调用了SpreadStrategyEngine的start_algo()

    def start_algo(
        self,
        direction: Direction,
        price: float,
        volume: float,
        payup: int,
        interval: int,
        lock: bool,
        offset: Offset
    ) -> str:
        """"""
        if not self.trading:
            return ""

        algoid: str = self.strategy_engine.start_algo(
            self,
            self.spread_name,          # 这里只有价差名称,没有传递策略名称
            direction,
            offset,
            price,
            volume,
            payup,
            interval,
            lock
        )

        self.algoids.add(algoid)

        return algoid
  1. 从此不知道委托单到底是哪个价差交易策略发出来的了!
  2. 成交单虽然可以委托单号查询到是哪个委托单,但是1的原因,所以找不到是哪个价差交易策略的成交单了
  3. 于是成交单只能被被推送到价差

4. 应该怎么解决这个问题?

这里只讨论原则性问题:

  1. 价差交易策略发出问题时传递价差交易策略名称,而不是价差名称;
  2. 将改变价差价差交易策略名称写入OrderData的reference字段,建立与价差策略实例的关联;
  3. SpreadStrategyEngine在收到order,trade时,安照价差策略实例进行order,trade保存、统计和相关持仓计算,包括spread_pos的计算

当然,这样的改动是大了些,可是已经存在目前的问题,修改是必须的!

用Python的交易员 wrote:

收到,我们来改下

感谢回复!
我在帖子里的第4部分已经提供了修改的方法,是否合适?可以参考一下。

1. 每个价差策略都会在on_init()时调用load_bar()

1.1 价差策略的on_init()

例如下面的DemoStrategy价差策略的代码:

class DemoStrategy(SpreadStrategyTemplate):
    """
    利用BOLL通道进行套利的一种价差交易
    """

    author = "hxxjava"

    bar_window = 5      # K线周期
    boll_window = 26    # BOLL参数1
    boll_dev = 2        # BOLL参数2        
    target_pos = 1      # 开仓数量
    payup = 10          
    interval = 5

    spread_pos = 0.0
    boll_mid = None
    boll_up = None
    boll_down = None

    sk_algoid:str = ""
    bp_algoid:str = ""
    bk_algoid:str = ""
    sp_algoid:str = ""

    parameters = [
        "bar_window",
        "boll_window",
        "boll_dev",
        "target_pos",
        "payup",
        "interval"
    ]

    variables = [
        "spread_pos",
        "boll_mid",
        "boll_up",
        "boll_down",
        "sk_algoid",
        "bp_algoid",
        "bk_algoid",
        "sp_algoid"
    ]

    def __init__(
        self,
        strategy_engine,
        strategy_name: str,
        spread: SpreadData,
        setting: dict
    ):
        """"""
        super().__init__(
            strategy_engine, strategy_name, spread, setting
        )

        self.bg = BarGenerator(self.on_spread_bar,self.bar_window,self.on_xmin_spread_bar)
        self.am = ArrayManager()

    def on_init(self):
        """
        Callback when strategy is inited.
        """
        self.write_log("策略初始化")

        self.load_bar(days=10,callback=self.on_spread_bar)

    def on_spread_bar(self,bar:BarData):
        """
        Callback when 1 min spread bar data is generated.
        """
        print(f"on_spread_bar bar={bar}")       # 看看价差策略的bar长的是什么样子
        self.bg.update_bar(bar)

    。。。其他省略

2. 假如没有下载过数据到本地数据库,load_bar(10)将加载不了1分钟价差K线数据!

2.1 发现问题的过程

  • 编写好了价差交易策略之后;
  • 启动vnpy,连接到CTP接口;
  • 进入价差交易模块;
  • 创建一个跨期价差:rb2109&rb2201,主动腿为rb2109.SHFE,被动腿为rb2201.SHFE。价格乘数分别为1,-1,交易乘数分别为1,-1,没有问题;
  • 用DemoStrategy创建一个价差策略实例:DS_rb2109&rb2201,也是成功的。
  • 初始化DS_rb2109&rb2201,除了策略的inited=True之外,没有任何反应,看不到有任何1分钟价差K线数据被打印出来!

2.2 为什么加载不到任何1分钟价差K线数据?

进去查找,原来问题出在这里:
DemoStrategy调用的load_bar()是从SpreadStrateyTemplate继承的,而SpreadStrateyTemplate是load_bar()又调用了strategy_engine的load_bar()。
strategy_engine的load_bar()的代码如下:

    def load_bar(
        self, spread: SpreadData, days: int, interval: Interval, callback: Callable
    ):
        """"""
        end = datetime.now()
        start = end - timedelta(days)

        bars = load_bar_data(spread, interval, start, end)

        for bar in bars:
            callback(bar)

load_bar_data()的代码:

@lru_cache(maxsize=999)
def load_bar_data(
    spread: SpreadData,
    interval: Interval,
    start: datetime,
    end: datetime,
    pricetick: float = 0
):
    """"""
    # Load bar data of each spread leg
    leg_bars: Dict[str, Dict] = {}

    for vt_symbol in spread.legs.keys():
        symbol, exchange = extract_vt_symbol(vt_symbol)

        bar_data: List[BarData] = database_manager.load_bar_data(
            symbol, exchange, interval, start, end
        )

        bars: Dict[datetime, BarData] = {bar.datetime: bar for bar in bar_data}
        leg_bars[vt_symbol] = bars

    # Calculate spread bar data
    spread_bars: List[BarData] = []

    for dt in bars.keys():
        spread_price = 0
        spread_value = 0
        spread_available = True

        for leg in spread.legs.values():
            leg_bar = leg_bars[leg.vt_symbol].get(dt, None)

            if leg_bar:
                price_multiplier = spread.price_multipliers[leg.vt_symbol]
                spread_price += price_multiplier * leg_bar.close_price
                spread_value += abs(price_multiplier) * leg_bar.close_price
            else:
                spread_available = False

        if spread_available:
            if pricetick:
                spread_price = round_to(spread_price, pricetick)

            spread_bar = BarData(
                symbol=spread.name,
                exchange=exchange.LOCAL,
                datetime=dt,
                interval=interval,
                open_price=spread_price,
                high_price=spread_price,
                low_price=spread_price,
                close_price=spread_price,
                gateway_name="SPREAD",
            )
            spread_bar.value = spread_value
            spread_bars.append(spread_bar)

    return spread_bars

原来load_bar_data()中只考虑了从本地数据库加载1分钟价差K线数据(当然是用价差组合中的多个合约的1分钟K线数据合成的)。
而我因为没有事先下载过rb2109.SHFE和rb2201.SHFE的合约的1分钟K线数据,所以加载不到这10天中的任何1分钟价差K线数据!

3. 为什么不优先从米筐接口rqdatac加载1分钟价差K线?

就算加载不到1分钟价差K线的原因已经找到,可是这样的设计仍然是有问题的:

  • 1 要求不停地下载价差策略相关的合约数据不合理,因为这很容易忘记
  • 2 就算你昨天已经下载了价差策略相关的合约数据,今天你没有下载最新的数据,重新启动了价差策略,策略加载的数据就会缺少最新的数据

4. 修改成优先从米筐接口rqdatac加载1分钟价差K线!

鉴于以上的分析,把app\spread_trading\base.py做如下修改:

4.1 加入从rqdatac读取历史数据的query_bar_from_rq()函数,

# hxxjava debug spread_trading
def query_bar_from_rq(
    symbol: str, exchange: Exchange, interval: Interval, start: datetime, end: datetime
):
    """
    Query bar data from RQData.
    """
    from vnpy.trader.rqdata import rqdata_client
    from vnpy.trader.object import HistoryRequest

    if not rqdata_client.inited:
        rqdata_client.init()

    req = HistoryRequest(
        symbol=symbol,
        exchange=exchange,
        interval=interval,
        start=start,
        end=end
    )
    data = rqdata_client.query_history(req)
    return data

4.2 修改价差K线的读取函数load_bar_data()的读取优先顺序,优先从米筐接口rqdatac加载1分钟价差K线,修改如下:

@lru_cache(maxsize=999)
def load_bar_data(
    spread: SpreadData,
    interval: Interval,
    start: datetime,
    end: datetime,
    pricetick: float = 0
):
    """"""
    # Load bar data of each spread leg
    leg_bars: Dict[str, Dict] = {}

    for vt_symbol in spread.legs.keys():
        symbol, exchange = extract_vt_symbol(vt_symbol)

        # hxxjava debug spread_trading
        bar_data = query_bar_from_rq(
            symbol=symbol, exchange=exchange,
            interval=interval,start=start,end=end
            )

        # if bar_data:
        #     print(f"load {symbol}.{exchange} {interval} bar_data, len of = {len(bar_data)}")

        if not bar_data:
            bar_data: List[BarData] = database_manager.load_bar_data(
                symbol, exchange, interval, start, end
            )

        bars: Dict[datetime, BarData] = {bar.datetime: bar for bar in bar_data}
        leg_bars[vt_symbol] = bars

    # Calculate spread bar data
    spread_bars: List[BarData] = []

    for dt in bars.keys():
        spread_price = 0
        spread_value = 0
        spread_available = True

        for leg in spread.legs.values():
            leg_bar = leg_bars[leg.vt_symbol].get(dt, None)

            if leg_bar:
                price_multiplier = spread.price_multipliers[leg.vt_symbol]
                spread_price += price_multiplier * leg_bar.close_price
                spread_value += abs(price_multiplier) * leg_bar.close_price
            else:
                spread_available = False

        if spread_available:
            if pricetick:
                spread_price = round_to(spread_price, pricetick)

            spread_bar = BarData(
                symbol=spread.name,
                exchange=exchange.LOCAL,
                datetime=dt,
                interval=interval,
                open_price=spread_price,
                high_price=spread_price,
                low_price=spread_price,
                close_price=spread_price,
                gateway_name="SPREAD",
            )
            spread_bar.value = spread_value
            spread_bars.append(spread_bar)

    return spread_bars

5. load_bar()从本地数据库加载的1分钟价差K线数据只有K线

看看 load_bar()从本地数据库加载的1分钟价差K线数据,如下所示:
你会发现其的成交量,volume=0,在使用过程从必须加以注意!
也就是说,需要成交量参与计算的指标是不可利用价差K线序列来计算的!

bar=BarData(gateway_name='SPREAD', symbol='rb2110&rb2201', exchange=<Exchange.LOCAL: 'LOCAL'>, datetime=datetime.datetime(2021, 6, 17, 11, 15, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), interval=<Interval.MINUTE: '1m'>, volume=0, open_interest=0, open_price=109.0, high_price=109.0, low_price=109.0, close_price=109.0)
bar=BarData(gateway_name='SPREAD', symbol='rb2110&rb2201', exchange=<Exchange.LOCAL: 'LOCAL'>, datetime=datetime.datetime(2021, 6, 17, 11, 16, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), interval=<Interval.MINUTE: '1m'>, volume=0, open_interest=0, open_price=108.0, high_price=108.0, low_price=108.0, close_price=108.0)
bar=BarData(gateway_name='SPREAD', symbol='rb2110&rb2201', exchange=<Exchange.LOCAL: 'LOCAL'>, datetime=datetime.datetime(2021, 6, 17, 11, 17, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), interval=<Interval.MINUTE: '1m'>, volume=0, open_interest=0, open_price=106.0, high_price=106.0, low_price=106.0, close_price=106.0)

建议在图中:

description
另外图中的⑧是创建错误的价差组合,软件运行删除,可是删除了之后还必须重新启动了之后才会消失,是否可以考虑直接有软件清除释放该价差组合?

1. PortfolioStrategy自带的策略PairTradingStrategy

这个组合策略实质上是价差交易。
我理解其本意是选择两个相关的合约进行价差交易,它有两个腿:leg1和leg2,将其leg1和leg2按照leg1_ratio和leg2_ratio设定的比例进行配比做出价差K线。
该组合的开仓信号为:
价差K线突破BOLL上轨或者上轨时,卖出leg1,买入leg2
价差K线突破BOLL上轨或者下轨时,买入leg1,卖出leg2
该组合的平仓信号为:
leg1有持多仓并且价差K线在BOLL中轨之上时,分别平仓leg1和leg2
leg1有持空仓并且价差K线在BOLL中轨之下时,分别平仓leg1和leg2

2. 当leg1_ratio和leg2_ratio不相等的时候就错误了:

当leg1_ratio和leg2_ratio相等的时候,一起都没有毛病。
当leg1_ratio和leg2_ratio不相等的时候,就有问题了。你会发现它们开仓的数量总是一样多,这是不对的。

比如leg1为i2109.DCE, leg2为rb2110.DCE。
我们知道i2109的合约乘数是100,atr=2.7,而rb2109的合约乘数是10,atr=7.7,
leg2_ratio/leg1_ratio =(2.7100)/(7.710) ≈ 7/2
那么我们应该配比leg1_ratio=2和leg2_ratio=7,这意味着i2109.DCE开仓2手,就需要反向开仓rb2110.DCE 开仓7手。
因为价差的计算是这样的:

self.current_spread = (
            leg1_bar.close_price * self.leg1_ratio - leg2_bar.close_price * self.leg2_ratio
        )

而实际开仓却是(1手,-1手)或(-1手,1手)的组合,与价差计算不符合。

3. 做如下修改:

代码如下,修改部分见注释:

from typing import List, Dict
from datetime import datetime

import numpy as np

from vnpy.app.portfolio_strategy import StrategyTemplate, StrategyEngine
from vnpy.trader.utility import BarGenerator
from vnpy.trader.object import TickData, BarData


class PairTradingStrategy(StrategyTemplate):
    """"""

    author = "用Python的交易员"

    price_add = 5
    boll_window = 20
    boll_dev = 2
    # fixed_size = 1  # 没有使用,去掉
    leg1_ratio = 1
    leg2_ratio = 1

    leg1_symbol = ""
    leg2_symbol = ""
    current_spread = 0.0
    boll_mid = 0.0
    boll_down = 0.0
    boll_up = 0.0

    parameters = [
        "price_add",
        "boll_window",
        "boll_dev",
        # "fixed_size",   # 没有使用,去掉
        "leg1_ratio",
        "leg2_ratio",
    ]
    variables = [
        "leg1_symbol",
        "leg2_symbol",
        "current_spread",
        "boll_mid",
        "boll_down",
        "boll_up",
    ]

    def __init__(
        self,
        strategy_engine: StrategyEngine,
        strategy_name: str,
        vt_symbols: List[str],
        setting: dict
    ):
        """"""
        super().__init__(strategy_engine, strategy_name, vt_symbols, setting)

        self.bgs: Dict[str, BarGenerator] = {}
        self.targets: Dict[str, int] = {}
        self.last_tick_time: datetime = None

        self.spread_count: int = 0
        self.spread_data: np.array = np.zeros(100)

        # Obtain contract info
        self.leg1_symbol, self.leg2_symbol = vt_symbols

        def on_bar(bar: BarData):
            """"""
            pass

        for vt_symbol in self.vt_symbols:
            self.targets[vt_symbol] = 0
            self.bgs[vt_symbol] = BarGenerator(on_bar)

    def on_init(self):
        """
        Callback when strategy is inited.
        """
        self.write_log("策略初始化")

        self.load_bars(1)

    def on_start(self):
        """
        Callback when strategy is started.
        """
        self.write_log("策略启动")

    def on_stop(self):
        """
        Callback when strategy is stopped.
        """
        self.write_log("策略停止")

    def on_tick(self, tick: TickData):
        """
        Callback of new tick data update.
        """
        if (
            self.last_tick_time
            and self.last_tick_time.minute != tick.datetime.minute
        ):
            bars = {}
            for vt_symbol, bg in self.bgs.items():
                bars[vt_symbol] = bg.generate()
            self.on_bars(bars)

        bg: BarGenerator = self.bgs[tick.vt_symbol]
        bg.update_tick(tick)

        self.last_tick_time = tick.datetime

    def on_bars(self, bars: Dict[str, BarData]):
        """"""
        self.cancel_all()

        # Return if one leg data is missing
        if self.leg1_symbol not in bars or self.leg2_symbol not in bars:
            return

        # Calculate current spread
        leg1_bar = bars[self.leg1_symbol]
        leg2_bar = bars[self.leg2_symbol]

        # Filter time only run every 5 minutes
        if (leg1_bar.datetime.minute + 1) % 5:
            return

        self.current_spread = (
            leg1_bar.close_price * self.leg1_ratio - leg2_bar.close_price * self.leg2_ratio
        )

        # Update to spread array
        self.spread_data[:-1] = self.spread_data[1:]
        self.spread_data[-1] = self.current_spread

        self.spread_count += 1
        if self.spread_count <= self.boll_window:
            return

        # Calculate boll value
        buf: np.array = self.spread_data[-self.boll_window:]

        std = buf.std()
        self.boll_mid = buf.mean()
        self.boll_up = self.boll_mid + self.boll_dev * std
        self.boll_down = self.boll_mid - self.boll_dev * std

        # Calculate new target position
        leg1_pos = self.get_pos(self.leg1_symbol)

        if not leg1_pos:
            if self.current_spread >= self.boll_up:
                self.targets[self.leg1_symbol] = -1*self.leg1_ratio     # hxxjava add *self.leg1_ratio
                self.targets[self.leg2_symbol] = 1*self.leg2_ratio      # hxxjava add *self.leg2_ratio
            elif self.current_spread <= self.boll_down:
                self.targets[self.leg1_symbol] = 1*self.leg1_ratio      # hxxjava add *self.leg1_ratio
                self.targets[self.leg2_symbol] = -1*self.leg2_ratio     # hxxjava add *self.leg2_ratio
        elif leg1_pos > 0:
            if self.current_spread >= self.boll_mid:
                self.targets[self.leg1_symbol] = 0
                self.targets[self.leg2_symbol] = 0
        else:
            if self.current_spread <= self.boll_mid:
                self.targets[self.leg1_symbol] = 0
                self.targets[self.leg2_symbol] = 0

        # Execute orders
        for vt_symbol in self.vt_symbols:
            target_pos = self.targets[vt_symbol]
            current_pos = self.get_pos(vt_symbol)

            pos_diff = target_pos - current_pos
            volume = abs(pos_diff)
            bar = bars[vt_symbol]

            if pos_diff > 0:
                price = bar.close_price + self.price_add

                if current_pos < 0:
                    self.cover(vt_symbol, price, volume)
                else:
                    self.buy(vt_symbol, price, volume)
            elif pos_diff < 0:
                price = bar.close_price - self.price_add

                if current_pos > 0:
                    self.sell(vt_symbol, price, volume)
                else:
                    self.short(vt_symbol, price, volume)

        self.put_event()

4. 另外:如何设置正相关和负相关的配对?

当leg1与leg2正相关时,leg1_ratio和leg2_ratio同为正整数;
当leg1与leg2负相关时,leg1_ratio为正整数和leg2_ratio同为负整数。

战略性聊天 wrote:

如题请问如何调用呢?谢谢

1. 对ArrayManager进行如下扩展:

class NewArrayManager(ArrayManager):

    def __init__(self, size: int = 100):
        """"""
        super().__init__(size)  

    def VWAP(self, n:int = 20, array: bool = True) -> Union[Tuple[float, float, float], np.ndarray]:
        """
        定义VWAP指标
        """

        close = self.close
        vol   = self.volume

        vwap, vwap10, vwap20 = bnlib.VWAP(close, vol, n, array)

        if array:
            return vwap, vwap10, vwap20
        else:
            return vwap[-1], vwap10[-1], vwap20[-1]

2. 在策略中使用NewArrayManager创建数组管理器:

2.1 通常在策略的init中如下创建数组管理器:

    self.am = NewArrayMannager()

2.2 在on_bar()或者on_xmin_bar()中如下调用VWAP:

       vwap, vwap10, vwap20 = self.am.VWAP(n=20)

那么 vwap, vwap10, vwap20 就分别表示20周期的vwap,vwap10表示10周期的vwap平均值,vwap20表示20周期的vwap平均值。

牧童短笛 wrote:

在终端模式下,非图形界面,python run.py 之后,只有连接CTP,没有连接UFT选项哦,怎么办?

终端模式下运行的是脚本吧?修改脚本不就可以了吗?

CTP TradeApi接口的合约交易状态通知函数定义:

OnRtnInstrumentStatus

合约交易状态通知,主动推送。公有流回报。

各交易所的合约状态变化详见合约状态变化说明。

◇ 1.函数原型virtual void OnRtnInstrumentStatus(CThostFtdcInstrumentStatusField *pInstrumentStatus) {};

其参数pInstrumentStatus:合约状态定义:

struct CThostFtdcInstrumentStatusField
{
    ///交易所代码
    TThostFtdcExchangeIDType    ExchangeID;
    ///保留的无效字段
    TThostFtdcOldExchangeInstIDType reserve1;
    ///结算组代码
    TThostFtdcSettlementGroupIDType SettlementGroupID;
    ///保留的无效字段
    TThostFtdcOldInstrumentIDType   reserve2;
    ///合约交易状态
    TThostFtdcInstrumentStatusType  InstrumentStatus;
    ///交易阶段编号
    TThostFtdcTradingSegmentSNType  TradingSegmentSN;
    ///进入本状态时间
    TThostFtdcTimeType  EnterTime;
    ///进入本状态原因
    TThostFtdcInstStatusEnterReasonType EnterReason;
    ///合约在交易所的代码
    TThostFtdcExchangeInstIDType    ExchangeInstID;
    ///合约代码
    TThostFtdcInstrumentIDType  InstrumentID;
};
EnterTime:只有郑商所的时间戳是CTP的本地时间,其他交易所的是交易所时间

其中有一个字段“交易阶段编号”(TradingSegmentSN )是如何编号的?

1. CtaTemplate模版的成员trading是指示策略是否处于交易状态

1.1 CtaTemplate模版的成员trading的定义

class CtaTemplate(ABC):
    """"""

    author = ""
    parameters = []
    variables = []

    def __init__(
        self,
        cta_engine: Any,
        strategy_name: str,
        vt_symbol: str,
        setting: dict,
    ):
        """"""
        self.cta_engine = cta_engine
        self.strategy_name = strategy_name
        self.vt_symbol = vt_symbol

        self.inited = False
        self.trading = False       # 策略是否处于交易状态
        self.pos = 0

    ... ... 其他略去

你会发现self.trading除了初始化时赋值为False之外,并没有在CtaTemplate的任何其他地方被修改赋值。

1.2 CtaTemplate模版的成员trading是由CtaEngine来维护的

我们的CTA策略都是从CtaTemplate模版扩展而来。当我们的CTA策略被实例化为运行策略时,self.trading就被缓冲到以CTA策略实例名称为文件名的json文件中。之后随着CTA策略被初始化、启动、停止,self.trading的状态在False和True之间做相应的变化,并调用put_event()函数写入json文件,调用sync_data()函数从json文件中读出。这两个函数中都是调用了self.cta_engine的功能。

    def put_event(self):
        """
        Put an strategy data event for ui update.
        """
        if self.inited:
            self.cta_engine.put_strategy_event(self)
    def sync_data(self):
        """
        Sync strategy variables value into disk storage.
        """
        if self.trading:
            self.cta_engine.sync_strategy_data(self)

1.3 CtaEngine的put_strategy_event()函数

    def put_strategy_event(self, strategy: CtaTemplate):
        """
        Put an event to update strategy status.
        """
        data = strategy.get_data()                                       # 策略的变量,包含的trading
        event = Event(EVENT_CTA_STRATEGY, data)
        self.event_engine.put(event)                                   # 发送消息EVENT_CTA_STRATEGY给订阅者,通知策略变量变化了

1.4 CtaEngine的sync_strategy_data()函数

    def sync_strategy_data(self, strategy: CtaTemplate):
        """
        Sync strategy data into json file.
        """
        data = strategy.get_variables()

        # 下面的两句把inited和trading都剔除了
        data.pop("inited")      # Strategy status (inited, trading) should not be synced.
        data.pop("trading")    

        self.strategy_data[strategy.strategy_name] = data
        save_json(self.data_filename, self.strategy_data)   # 把其他策略变量写入json文件

2. CtaTemplate模版的成员trading不能告诉策略当前交易合约否处于交易状态

由上面的代码分析发现,策略的trading并没有考虑交易合约是否可以处在交易状态。
策略的trading是会影响到策略的委托行为的,下面是CtaTemplate的send_order()函数:

    def send_order(
        self,
        direction: Direction,
        offset: Offset,
        price: float,
        volume: float,
        stop: bool = False,
        lock: bool = False,
        net: bool = False
    ):
        """
        Send a new order.
        """
        if self.trading:                                                    # 只要self.trading==True就可以委托
            vt_orderids = self.cta_engine.send_order(
                self, direction, offset, price, volume, stop, lock, net
            )
            return vt_orderids
        else:
            return []

实际使用中会发现策略可能会在休市或者非交易时间,因为收到的错误数据而误动作,导致出现委托无法得到回应或者是拒单。
其原因也是因为作为委托条件的self.trading并没有考虑委托时刻,交易合约是否可以处在交易状态!

3. 怎么解决这个问题?

3.1 开放CTP网关接口的合约品种交易状态推送接口函数

合约品种交易状态推送接口函数是onRtnInstrumentStatus()。
具体方法我已经在再谈集合竞价 里详细地讨论过了,文章很长,希望有耐心看完,这里就不再赘述。

注:其他网关接口也应该类似。

3.2 委托执行条件 = 合约交易状态 + self.trading

3.2.1 合约有哪些交易状态

/////////////////////////////////////////////////////////////////////////
///TFtdcInstrumentStatusType是一个合约交易状态类型
/////////////////////////////////////////////////////////////////////////
///开盘前
#define THOST_FTDC_IS_BeforeTrading '0'
///非交易
#define THOST_FTDC_IS_NoTrading '1'
///连续交易
#define THOST_FTDC_IS_Continous '2'
///集合竞价报单
#define THOST_FTDC_IS_AuctionOrdering '3'
///集合竞价价格平衡
#define THOST_FTDC_IS_AuctionBalance '4'
///集合竞价撮合
#define THOST_FTDC_IS_AuctionMatch '5'
///收盘
#define THOST_FTDC_IS_Closed '6'

typedef char TThostFtdcInstrumentStatusType;

只有在交易合约在“连续交易”和 “集合竞价报单”这两种状态下,同时交易者也启动了策略(trading==True)情况下,策略才可以执行委托。
也就是说 :委托执行条件 = 合约交易状态 + self.trading。

3.2.3 实现方法

待续...

战略性聊天 wrote:

self.fast_ma0=fast_ma[-1]
请问-1是指最新的不断变化价格的均线还是当前时间点上一根的均线,谢谢

是根据已经完成的K线序列计算而得到的均线序列的最后一个,不是正在变化的临时K线不参与计算的。

1. IF2107的集合竞价

1.1 修改策略的on_tick(),以便输出集合竞价tick数据

    def on_tick(self, tick: TickData):
        """
        Callback of new tick data update.
        """
        tick_time = tick.datetime.time()
        time1 = time(20,55,0)
        time2 = time(21,0,1)
        if time1 <= tick_time <= time2:
            print(f"【集合竞价数据 tick_time={tick_time} tick={tick}】")

        if ("IF" in tick.vt_symbol) and ("CFFEX" in tick.vt_symbol):
            time1 = time(9,25,0)
            time2 = time(9,30,1)
            if time1 <= tick_time <= time2:
                print(f"【集合竞价数据 tick_time={tick_time} tick={tick}】")

        super().on_tick(tick)

1.2 集合竞价tick数据

【集合竞价tick数据 
tick_time=09:29:00.500000 
tick=TickData(
    gateway_name='CTP', 
    symbol='IF2107', 
    exchange=<Exchange.CFFEX: 'CFFEX'>, 
    datetime=datetime.datetime(2021, 6, 9, 9, 29, 0, 500000, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), 
    name='沪深300指数2107', 
    volume=7, 
    open_interest=22276.0, 
    last_price=5183.8, 
    last_volume=0, 
    limit_up=5698.200000000001, 
    limit_down=4662.2, 
    open_price=5183.8, 
    high_price=5183.8, 
    low_price=5183.8, 
    pre_close=5184.0, 
    bid_price_1=5180.2, 
    bid_price_2=0, 
    bid_price_3=0, 
    bid_price_4=0, 
    bid_price_5=0, 
    ask_price_1=5184.0, 
    ask_price_2=0, 
    ask_price_3=0, 
    ask_price_4=0, 
    ask_price_5=0, 
    bid_volume_1=4, 
    bid_volume_2=0, 
    bid_volume_3=0, 
    bid_volume_4=0, 
    bid_volume_5=0, 
    ask_volume_1=3, 
    ask_volume_2=0, 
    ask_volume_3=0, 
    ask_volume_4=0, 
    ask_volume_5=0)】

1.3 开市后第一秒的tick数据

1.3.1 开市后第一秒的第一个tick数据

tick_time=09:30:00.500000 
tick=TickData(
    gateway_name='CTP', 
    symbol='IF2107', 
    exchange=<Exchange.CFFEX: 'CFFEX'>, 
    datetime=datetime.datetime(2021, 6, 9, 9, 30, 0, 500000, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), 
    name='沪深300指数2107', 
    volume=10, 
    open_interest=22274.0, 
    last_price=5180.2, 
    last_volume=0, 
    limit_up=5698.200000000001, 
    limit_down=4662.2, 
    open_price=5183.8, 
    high_price=5183.8, 
    low_price=5180.2, 
    pre_close=5184.0, 
    bid_price_1=5180.2, 
    bid_price_2=0, 
    bid_price_3=0, 
    bid_price_4=0, 
    bid_price_5=0, 
    ask_price_1=5180.4, 
    ask_price_2=0, 
    ask_price_3=0, 
    ask_price_4=0, 
    ask_price_5=0, 
    bid_volume_1=2, 
    bid_volume_2=0, 
    bid_volume_3=0, 
    bid_volume_4=0, 
    bid_volume_5=0, 
    ask_volume_1=1, 
    ask_volume_2=0, 
    ask_volume_3=0, 
    ask_volume_4=0, 
    ask_volume_5=0)】

1.3.2 开市后第一秒的第二个tick数据

tick_time=09:30:01 
tick=TickData(
    gateway_name='CTP', 
    symbol='IF2107', 
    exchange=<Exchange.CFFEX: 'CFFEX'>, 
    datetime=datetime.datetime(2021, 6, 9, 9, 30, 1, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>),
    name='沪深300 指数2107', 
    volume=13, 
    open_interest=22272.0, 
    last_price=5180.2, 
    last_volume=0, 
    limit_up=5698.200000000001, 
    limit_down=4662.2, 
    open_price=5183.8, 
    high_price=5183.8, 
    low_price=5180.2, 
    pre_close=5184.0, 
    bid_price_1=5177.4, 
    bid_price_2=0, 
    bid_price_3=0, 
    bid_price_4=0, 
    bid_price_5=0, 
    ask_price_1=5179.2, 
    ask_price_2=0, 
    ask_price_3=0, 
    ask_price_4=0, 
    ask_price_5=0, 
    bid_volume_1=5, 
    bid_volume_2=0, 
    bid_volume_3=0, 
    bid_volume_4=0, 
    bid_volume_5=0, 
    ask_volume_1=1, 
    ask_volume_2=0, 
    ask_volume_3=0, 
    ask_volume_4=0, 
    ask_volume_5=0)】

2. 深交所的股票的集合竞价——有意思!

2.1 白云机场的1分钟K线图:

以白云机场为例,它的集合竞价是每个交易日的14:56-14:59,但是它这三分钟却只形成1根1分钟K线!
下面是白云机场的1分钟K线图:
description

2.2 1分钟K线的代表的交易时间长度不一定是1分钟

由上图可知:
深交所的股票在集合竞价阶段1分钟K线就是3分钟时长,其它时段的又是1分钟;
上交所的股票在集合竞价阶段是没有1分钟K线的,它发生在9:25-9:29,却被合并到开市后的第一根1分钟K线中,也就是说这根K线代表的交易时长为5分钟。
国内期货日盘合约的集合竞价阶段发生在上午开市前5分钟的前4分钟内,却被合并到开市后的第一根1分钟K线中,也就是说这根K线代表的交易时长为5分钟。
国内期货夜盘合约的集合竞价阶段发生在前一交易日的夜间20:55-21:00的前4分钟内,却被合并到开市后的第一根1分钟K线中,也就是说这根K线代表的交易时长为5分钟。

3. 问题:vnpy的BarGenerator如何正确处理这些集合竞价的tick数据?

3.1 目前的BarGenerator无法正确处理这些集合竞价的tick数据。

这个问题我之前已经有文章讨论过了,需要修改是肯定的!

3.2 正确处理这些集合竞价的tick数据需要那些条件?

  • 交易时间段
  • 集合竞价时段
  • 集合竞价的数据应该合并到开市后第一根K线,还是独立存在?

4. 被vnpy忽视的CTP接口功能:合约交易状态

4.1 合约交易状态即进入原因定义

位于vnpy_ctp\api\include\ctp\ThostFtdcUserApiDataType.h

/////////////////////////////////////////////////////////////////////////
///TFtdcInstrumentStatusType是一个合约交易状态类型
/////////////////////////////////////////////////////////////////////////
///开盘前
#define THOST_FTDC_IS_BeforeTrading '0'
///非交易
#define THOST_FTDC_IS_NoTrading '1'
///连续交易
#define THOST_FTDC_IS_Continous '2'
///集合竞价报单
#define THOST_FTDC_IS_AuctionOrdering '3'
///集合竞价价格平衡
#define THOST_FTDC_IS_AuctionBalance '4'
///集合竞价撮合
#define THOST_FTDC_IS_AuctionMatch '5'
///收盘
#define THOST_FTDC_IS_Closed '6'

typedef char TThostFtdcInstrumentStatusType;

/////////////////////////////////////////////////////////////////////////
///TFtdcInstStatusEnterReasonType是一个品种进入交易状态原因类型
/////////////////////////////////////////////////////////////////////////
///自动切换
#define THOST_FTDC_IER_Automatic '1'
///手动切换
#define THOST_FTDC_IER_Manual '2'
///熔断
#define THOST_FTDC_IER_Fuse '3'

typedef char TThostFtdcInstStatusEnterReasonType;

4.2 让vnpy接收CTP接口合约交易状态信息

1)在trader\constant.py中定义合约交易状态类型

class InstrumentStatus(Enum):
    """
    合约交易状态类型 hxxjava debug
    """
    BEFORE_TRADING = "开盘前"
    NO_TRADING = "非交易"
    CONTINOUS = "连续交易" 
    AUCTION_ORDERING = "集合竞价报单"
    AUCTION_BALANCE = "集合竞价价格平衡"
    AUCTION_MATCH = "集合竞价撮合"
    CLOSE = "收盘"

2)在trader\object.py中定义合约状态类型StatusData

@dataclass
class StatusData(BaseData):
    """
    合约状态 hxxjava debug
    """
    # 合约代码
    symbol:str       
    # 交易所代码                       
    exchange : Exchange    
    # 结算组代码                     
    settlement_group_id : str = ""  
    # 合约交易状态             
    instrument_status : InstrumentStatus = None   
    # 交易阶段编号
    trading_segment_sn : int = None 
    # 进入本状态时间
    enter_time : str = ""      
    # 进入本状态原因  
    enter_reason : str = ""  
    # 合约在交易所的代码       
    exchange_inst_id : str = ""     

    def __post_init__(self):
        """  """
        self.vt_symbol = f"{self.symbol}.{self.exchange.value}"

3)在trader\event.py中定义合约状态消息EVENT_STATUS

EVENT_STATUS = "eStatus"                        # hxxjava debug

4)在trader\gateway.py中给gateway增加on_status()函数

    def on_status(self, status: StatusData) -> None:    # hxxjava debug
        """
        Instrument Status event push.
        """
        self.on_event(EVENT_STATUS, status)

5) 在vnpy_ctp\gateway\ctp_gateway.py文件中,为TdApi加入如下函数

    def onRtnInstrumentStatus(self,data:dict):
        """ 
        当接收到合约状态信息 # hxxjava debug 
        """
        if data:
            status =  StatusData(
                symbol = data["InstrumentID"],
                exchange = EXCHANGE_CTP2VT[data["ExchangeID"]],
                settlement_group_id = data["SettlementGroupID"],
                instrument_status = data["InstrumentStatus"],
                trading_segment_sn = data["TradingSegmentSN"],
                enter_time = data["EnterTime"],
                enter_reason = data["EnterReason"],
                exchange_inst_id = data["ExchangeInstID"],
                gateway_name=self.gateway_name
            )
            # print(f"status = {status}")
            self.gateway.on_status(status)

6) 运行vnpy,连接CTP接口,看看都收到了什么?

status=StatusData(gateway_name='CTP', symbol='nr', exchange=<Exchange.INE: 'INE'>, settlement_group_id='00000001', instrument_status='1', trading_segment_sn=4, enter_time='19:58:37', enter_reason='1', exchange_inst_id='nr')
status=StatusData(gateway_name='CTP', symbol='lu', exchange=<Exchange.INE: 'INE'>, settlement_group_id='00000001', instrument_status='1', trading_segment_sn=4, enter_time='19:58:37', enter_reason='1', exchange_inst_id='lu')
status=StatusData(gateway_name='CTP', symbol='sc', exchange=<Exchange.INE: 'INE'>, settlement_group_id='00000001', instrument_status='1', trading_segment_sn=4, enter_time='19:58:37', enter_reason='1', exchange_inst_id='sc')
... ...  相同略去 内容太多,包括了这个CTP接口中所有合约品种的合约状态信息,其他省略了

7) 收到了合约状态信息有什么用?

合约状态信息是有交易服务器推送到客户端的,其中包含如下的合约状态:
BEFORE_TRADING = "开盘前"
NO_TRADING = "非交易"
CONTINOUS = "连续交易"
AUCTION_ORDERING = "集合竞价报单"
AUCTION_BALANCE = "集合竞价价格平衡"
AUCTION_MATCH = "集合竞价撮合"
CLOSE = "收盘"
并且还有进入的时间和原因,这些信息正是我们解决BarGenerator在处理集合竞价时段的tick数据错误问题所需要的!

5. CTA策略如何使用使用合约状态信息?

5.1 在OmsEngine中收集当前市场的所有合约的合约状态信息

在vnpy\trader\engine.py文件中,为OmsEngine做如下的修改:

class OmsEngine(BaseEngine):
    """
    Provides order management system function for VN Trader.
    """

    def __init__(self, main_engine: MainEngine, event_engine: EventEngine):
        """"""
        super(OmsEngine, self).__init__(main_engine, event_engine, "oms")

        self.ticks: Dict[str, TickData] = {}
        self.orders: Dict[str, OrderData] = {}
        self.trades: Dict[str, TradeData] = {}
        self.positions: Dict[str, PositionData] = {}
        self.accounts: Dict[str, AccountData] = {}
        self.contracts: Dict[str, ContractData] = {}
        self.statuses: Dict[str, StatusData] = {}       # hxxjava debug
        self.active_orders: Dict[str, OrderData] = {}

        self.add_function()
        self.register_event()

    def add_function(self) -> None:
        """Add query function to main engine."""
        self.main_engine.get_tick = self.get_tick
        self.main_engine.get_order = self.get_order
        self.main_engine.get_trade = self.get_trade
        self.main_engine.get_position = self.get_position
        self.main_engine.get_account = self.get_account
        self.main_engine.get_contract = self.get_contract
        self.main_engine.get_all_ticks = self.get_all_ticks
        self.main_engine.get_all_orders = self.get_all_orders
        self.main_engine.get_all_trades = self.get_all_trades
        self.main_engine.get_all_positions = self.get_all_positions
        self.main_engine.get_all_accounts = self.get_all_accounts
        self.main_engine.get_all_contracts = self.get_all_contracts
        self.main_engine.get_all_statuses = self.get_all_statuses       # hxxjava debug
        self.main_engine.get_all_active_orders = self.get_all_active_orders

    def register_event(self) -> None:
        """"""
        self.event_engine.register(EVENT_TICK, self.process_tick_event)
        self.event_engine.register(EVENT_ORDER, self.process_order_event)
        self.event_engine.register(EVENT_TRADE, self.process_trade_event)
        self.event_engine.register(EVENT_POSITION, self.process_position_event)
        self.event_engine.register(EVENT_ACCOUNT, self.process_account_event)
        self.event_engine.register(EVENT_CONTRACT, self.process_contract_event)  
        self.event_engine.register(EVENT_STATUS, self.process_status_event)  # hxxjava debug

    ... ...  相同略去


    def process_status_event(self, event: Event) -> None:   # hxxjava debug
        """"""
        status = event.data
        # print(f"got a status = {status}")
        self.statuses[status.vt_symbol] = status

    ... ...  相同略去


    def get_all_statuses(self) -> List[StatusData]:     # hxxjava debug
        """
        Get all status data.
        """
        return list(self.statuses.values())


    ... ...  相同略去

注意:
这个步骤的目的:
把CTP接口接收到的所有合约品种的状态信息保存到self.statuses字典中。
为系统的主引擎main_engine提供访问所有合约品种的状态信息函数get_all_statuses()

5.2 把CTA策略模板CtaTemplate做如下修改

5.2.1 CTA策略引擎中,增加策略初始化时订阅EVENT_STATUS

修改app\cta_strategy\engine.py文件中的CtaEngine,下面只给出主要的代码修改部分:

class CtaEngine(BaseEngine):
    """"""

    ... ...  相同略去


    def register_event(self):
        """"""
        self.event_engine.register(EVENT_TICK, self.process_tick_event)
        self.event_engine.register(EVENT_ORDER, self.process_order_event)
        self.event_engine.register(EVENT_TRADE, self.process_trade_event)
        self.event_engine.register(EVENT_POSITION, self.process_position_event)
        self.event_engine.register(EVENT_STATUS,self.process_status_event)      # hxxjava debug

    ... ...  相同略去

    def process_status_event(self,event:Event): # hxxjava debug
        """ 分发合约某种状态信息到相应的策略 """
        status:StatusData = event.data

        for vt_symbol in self.symbol_strategy_map.keys():
            symbol,exchange = extract_vt_symbol(vt_symbol)
            instrument = left_alphas(symbol)
            if  (status.vt_symbol.upper() in [symbol.upper(),instrument.upper()]) and (status.exchange == exchange):
                # 分发合约某种状态信息到相应的所有策略中
                strategies = self.symbol_strategy_map[vt_symbol]
                for strategy in strategies:
                    self.call_strategy_func(strategy, strategy.on_status, status) 

    ... ...  相同略去

5.2.2 CtaTemplate增加 on_status()处理接口推送的合约状态信息

在app\cta_strategy\template.py文件中,为cta_template模版增加下面的接口:

    @virtual
    def on_status(self, status: StatusData): # hxxjava debug
        """
        Callback of status data
        """
        pass

5.2.3 为您自己CTA策略增加 on_status()处理接口推送的合约状态信息

简单举例如下:

    def on_status(self, status: StatusData):    # hxxjava debug
        print(f"strategy {self.strategy_name} got a status event {status}")

到这里,您可以让你的CTA策略在感知到策略正在交易的合约交易状态变化了。
具体如何使用合约交易状态信息, 这么做取决于您的需求了。举例如下:

  • 当在合约处在集合竞价完成阶段收到了一条tick信息,你就可以把它代入到开盘的第一个连续竞价时间段,把该tick合并到第一个1分钟K线中
  • 当最新收到的合约交易状态为非交易状态(既不是集合竞价状态,也不连续竞价状态),策略就可以不发出委托,以免被拒单
  • 目前vnpy的CTA策略中,使用BarGenerator生成1分钟K,在各个交易时间段的最后1分钟是不会生成1分钟K线的,直到收到下一个各个交易时间段的第一个tick,才会生成上个交易时间段的最后1分钟K线。现在我们就可以利用合约交易状态的变化(如合约品种转入了非交易状态或者收盘状态),可以让BarGenerator立即生成当前的1分钟K线。

在这个文件里:
vnpy_ctp\api\include\ctp\ThostFtdcUserApiStruct.h
定义如下:

///深度行情
struct CThostFtdcDepthMarketDataField
{
    ///交易日
    TThostFtdcDateType  TradingDay;
    ///保留的无效字段
    TThostFtdcOldInstrumentIDType   reserve1;
    ///交易所代码
    TThostFtdcExchangeIDType    ExchangeID;
    ///保留的无效字段
    TThostFtdcOldExchangeInstIDType reserve2;
    ///最新价
    TThostFtdcPriceType LastPrice;
    ///上次结算价
    TThostFtdcPriceType PreSettlementPrice;
    ///昨收盘
    TThostFtdcPriceType PreClosePrice;
    ///昨持仓量
    TThostFtdcLargeVolumeType   PreOpenInterest;
    ///今开盘
    TThostFtdcPriceType OpenPrice;
    ///最高价
    TThostFtdcPriceType HighestPrice;
    ///最低价
    TThostFtdcPriceType LowestPrice;
    ///数量
    TThostFtdcVolumeType    Volume;
    ///成交金额
    TThostFtdcMoneyType Turnover;
    ///持仓量
    TThostFtdcLargeVolumeType   OpenInterest;
    ///今收盘
    TThostFtdcPriceType ClosePrice;
    ///本次结算价
    TThostFtdcPriceType SettlementPrice;
    ///涨停板价
    TThostFtdcPriceType UpperLimitPrice;
    ///跌停板价
    TThostFtdcPriceType LowerLimitPrice;
    ///昨虚实度
    TThostFtdcRatioType PreDelta;
    ///今虚实度
    TThostFtdcRatioType CurrDelta;
    ///最后修改时间
    TThostFtdcTimeType  UpdateTime;
    ///最后修改毫秒
    TThostFtdcMillisecType  UpdateMillisec;
    ///申买价一
    TThostFtdcPriceType BidPrice1;
    ///申买量一
    TThostFtdcVolumeType    BidVolume1;
    ///申卖价一
    TThostFtdcPriceType AskPrice1;
    ///申卖量一
    TThostFtdcVolumeType    AskVolume1;
    ///申买价二
    TThostFtdcPriceType BidPrice2;
    ///申买量二
    TThostFtdcVolumeType    BidVolume2;
    ///申卖价二
    TThostFtdcPriceType AskPrice2;
    ///申卖量二
    TThostFtdcVolumeType    AskVolume2;
    ///申买价三
    TThostFtdcPriceType BidPrice3;
    ///申买量三
    TThostFtdcVolumeType    BidVolume3;
    ///申卖价三
    TThostFtdcPriceType AskPrice3;
    ///申卖量三
    TThostFtdcVolumeType    AskVolume3;
    ///申买价四
    TThostFtdcPriceType BidPrice4;
    ///申买量四
    TThostFtdcVolumeType    BidVolume4;
    ///申卖价四
    TThostFtdcPriceType AskPrice4;
    ///申卖量四
    TThostFtdcVolumeType    AskVolume4;
    ///申买价五
    TThostFtdcPriceType BidPrice5;
    ///申买量五
    TThostFtdcVolumeType    BidVolume5;
    ///申卖价五
    TThostFtdcPriceType AskPrice5;
    ///申卖量五
    TThostFtdcVolumeType    AskVolume5;
    ///当日均价
    TThostFtdcPriceType AveragePrice;
    ///业务日期
    TThostFtdcDateType  ActionDay;
    ///合约代码
    TThostFtdcInstrumentIDType  InstrumentID;
    ///合约在交易所的代码
    TThostFtdcExchangeInstIDType    ExchangeInstID;
};

linhertz wrote:

请问在币安也有同样的问题吗?是不是可以把 Int去掉就解决了这个问题。不过去掉Int之后,那么其他的策略,例如股指期货策略是不是会受影响?对于新手来讲怎么解决最好?

谢谢

不可以。因为去掉int虽然可以在PaperAccount模拟时能够下单,但是一旦实盘交易是无法开仓比合约资料中规定的最小手数的。

© 2015-2022 微信 18391752892
备案服务号:沪ICP备18006526号

沪公网安备 31011502017034号

【用户协议】
【隐私政策】
【免责条款】